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Abstract

We describe the formal speci�cation and veri�cation of an algorithm

for Interactive Consistency [12] based on the Oral Messages algorithm for

Byzantine Agreement [9]. We compare our treatment with that of Bevier

and Young [2,3], who presented a formal speci�cation and veri�cation for

a very similar algorithm. Unlike Bevier and Young, who observed that

\the invariant maintained in the recursive subcases of the algorithm is

signi�cantly more complicated than is suggested by the published proof"

and who found its formal veri�cation \a fairly di�cult exercise in me-

chanical theorem proving," our treatment is very close to the previously

published analysis of the algorithm, and our formal speci�cation and

veri�cation are straightforward.

This example illustrates how delicate choices in the formulation of

a problem can have signi�cant impact on the readability of its formal

speci�cation and on the tractability of its formal veri�cation.
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Chapter 1

Introduction

Fault tolerant systems, such as those used in digital 
ight control, require a way

to ensure that the replicated processors all work on the same input values. For

example, each processor may sample di�erent sensors (or the same sensor at di�erent

times) and thereby obtain di�erent estimates of some external value; these di�erent

estimates need to be combined into a single consensus value that is the same for

all processors. By starting with the same inputs, all correctly working processors

should then compute the same outputs and faults can be masked using exact-match

majority voting.

The problem of deciding on a single consensus value can be broken into two

stages. In the �rst stage, the processors exchange their private data values among

themselves. At the end of this stage, each processor has a vector giving the data

values of all the other processors; if there are no faults, these vectors will be identi-

cal on all processors. The second stage may then comprise any data conditioning,

selection, or averaging algorithms whatever: provided all processors run the same al-

gorithms, and start with the same vectors, they will end up with the same consensus

values.

We are interested in the �rst stage of this process, and with ensuring that it per-

forms reliably in the presence of faults. The worst kinds of fault are \asymmetrical"

ones where a faulty processor communicates di�erent values to di�erent processors,

potentially causing nonfaulty processors to disagree among themselves. This prob-

lem of reaching agreement in the presence of arbitrary faults was �rst posed, named,

and solved by Pease, Shostak, and Lamport in 1980 [12]. They named the problem

that of achieving \Interactive Consistency." In 1982, the same authors developed

their analysis further, and reformulated it as the \Byzantine Generals Problem" [9];

they named a revised version of the algorithm from their earlier paper the \Oral

Messages" algorithm. The principal di�erence between the Interactive Consistency

and Byzantine Generals problems is that the former is concerned with the reli-

able exchange of values among all the participants, whereas the latter is concerned

1



2 Chapter 1. Introduction

with the reliable communication of a value from a distinguished participant (called

the \General") to all the others (who are called \lieutenants"). In practical appli-

cations, it is the Interactive Consistency formulation that is appropriate, but the

colorful metaphor of the Byzantine Generals has proved so memorable that this for-

mulation is better known; indeed, the whole �eld of algorithm design for agreement

in the presence of faults has become known as that of \Byzantine Agreement," and

the asymmetrical kind of fault mentioned earlier has become known as a \Byzantine

fault."

A problem related to Interactive Consistency is Byzantine fault-tolerant clock

synchronization [8]. In 1988, we formally veri�ed the \Interactive Convergence"

algorithm for this problem [8, Algorithm CNV] and found that the published anal-

ysis of this algorithm was incorrect in a number of details [15, 16]. Our colleague

Shankar has formally veri�ed the generalized clock synchronization paradigm of

Schneider [18] and similarly found a number of small errors [19,20]. In both cases,

the formal veri�cation led to improved and simpli�ed presentations of the infor-

mal justi�cations for the correctness of the algorithm concerned. We have often

wondered whether formal veri�cation of the Oral Messages algorithm for Byzan-

tine Agreement would yield similar bene�ts, and have been curious to know how

di�cult the formal veri�cation of this algorithm would be, compared to the clock

synchronization algorithms.

In 1990, a formal veri�cation of the Oral Messages Algorithm was published by

Bevier and Young [3] as part of the documentation of a more substantial exercise

in which they also veri�ed the design of a circuit to perform the algorithm, and the

theorem that the fault-tolerance of the Oral Messages Algorithm is optimal among

its class of algorithms.

Bevier and Young described the algorithm as \quite di�cult" and have indi-

cated elsewhere that development of its formal veri�cation (using the Boyer-Moore

prover [4]) took them about a month. We found this surprising, since the published

journal proof for the correctness of the Oral Messages algorithm [9, page 390] is

short (less than a page) and straightforward. The time taken may be explained by

Bevier and Young's observation [3, page 1] that their machine-checked proof

\: : :elucidates several issues which are treated rather lightly in the pub-

lished version of the proof. In particular, the invariant maintained in

the recursive subcases of the algorithm is signi�cantly more complicated

than is suggested by the published proof."

After careful study of Bevier and Young's presentation, however, we were unable to

persuade ourselves that their claim of suppressed complexity in the published journal

proof is justi�ed. On the contrary, we continued to �nd the journal description and

proof more compelling than their formal presentation. In order to resolve our doubts,

we decided to undertake a separate formal veri�cation using our Ehdm system [17].
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There are relatively few examples of interesting or di�cult veri�cations under-

taken by more than one group, or using more than one system for formal speci�ca-

tion and veri�cation. Bill Young's comparison of Z and Gypsy [24] and the 12-way

comparison reported by Jeannette Wing [23] are concerned solely with speci�cation.

Rather more interesting are David Basin and Matt Kaufmann's comparison of two

veri�cations of the �nite Ramsey theorem [1], and Bill Young's duplication [25] of

our veri�cation [15,16] of a clock synchronization algorithm [8].

One reason for the paucity of comparisons using substantial or di�cult examples

is that only a handful of veri�cation systems are capable of undertaking such exam-

ples, and the developers and users of those systems are fully engaged in their own

lines of enquiry. When they can be performed, however, such comparisons are very

useful, since they provide the only reasonable way to compare claims for \readabil-

ity" or \expressiveness" in speci�cation languages, and \power" or \e�ectiveness"

in veri�cation environments.

Comparative studies can be undertaken at several di�erent levels: two di�erent

systems can be used to proof-check the same veri�cation; two di�erent veri�cations

can be performed for the same speci�cation; two di�erent formalizations can be de-

veloped for the same speci�cation; or two completely separate formal developments

can be performed for a single problem. Di�erent lessons are likely to be learned from

these di�erent levels of comparison: when one tool or notation is simply substituted

for another, we may learn something about the ability of the second to duplicate

the results of the �rst on its \home ground," but we will not learn how the problem

might have been approached di�erently had the second tool or notation been used

from the start; and when two independent developments are undertaken, we may

learn more about the problem-solving approaches of the individuals concerned than

about the tools employed.

The experiment described here is of the latter kind, and it may be that the main

conclusion to be drawn concerns the considerable impact that apparently small

changes in the formulation of a problem can have on the tractability of its formal

veri�cation. On the other hand, this example also invites speculation on the bene�-

cial in
uence that an expressive speci�cation language and a direct approach to proof

may have in the development of felicitous formulations of interesting algorithms.



Chapter 2

Informal Overview

In this section we brie
y review the Interactive Consistency (IC) and Byzantine Gen-

erals (BG) problems, and the \Original" (OA) and Oral Messages (OM) algorithms

for solving them. We follow the presentations of Pease, Shostak, and Lamport [9,12]

very closely.

2.1 Interactive Consistency

Consider a set of n isolated processors, of which some may be faulty. It is not known

which processors are faulty, nor how many, nor what behavior may be exhibited by

faulty processors. Suppose also that each processor p has some private value vp
(such as its reading of some sensor). The problem is to devise an algorithm that will

allow each processor p to compute a vector Vp of values, in which, for each processor

r, Vp(r) is p's estimate of r's private value, satisfying the following conditions:

IC1: If processors p and q are nonfaulty, then they agree on the value ascribed to

any other processor r; that is: Vp(r) = Vq(r).

IC2: If processors p and r are nonfaulty, then the value ascribed to r by p is indeed

r's private value; that is, Vp(r) = vr.

2.1.1 Oral Messages

There are many variations on the IC and BG problems that di�er in the assumptions

made about interprocessor communications. For example, whether the processors

are fully connected, whether messages can be lost, and whether a faulty processor

can forge a message purporting to have come from another. The Oral Messages

assumptions are:

A1: Every message that is sent between nonfaulty processors is correctly delivered.

4



2.1. Interactive Consistency 5

A2: The receiver of a message knows who sent it.

A3: The absence of a message can be detected.

An algorithm based on Oral Messages solves the IC problem under these as-

sumptions. The principal di�culty that must be overcome by such an algorithm is

that a faulty processor may send di�erent values to di�erent nonfaulty processors,

thereby complicating satisfaction of condition IC1. To overcome this, an algorithm

will use several \rounds" of message exchange during which processor p tells pro-

cessor q what value it received from processor r and so on. Of course, if processor

p is faulty, it may \lie" about the value it received from processor r. By making

su�ciently many rounds, an algorithm can defeat this threat.

2.1.2 The Original Algorithm

The original algorithm [12, page 230], which we will abbreviate as OA, is parame-

terized by n, the number of processors, and m (where n � 3m + 1), the maximum

number of faulty processors. The following description of OA is taken verbatim

from [12, page 230] (except that we have changed V to v).

\Let P be the set of processors and v a set of values. For k � 1, we

de�ne a k-level scenario as a mapping from the set of nonempty strings

(possibly having repetitions) over P of length � k+1, to v. For a given

k-level scenario, � and string w = p1p2 : : : pr, 2 � r � k + 1, �(w) is

interpreted as the value p2 tells p1 that p3 told p2 that p4 told p3: : : that pr
told pr�1 is pr's private value. For a single-element string p, �(p) simply

designates p's private value vp. A k-level scenario thus summarizes the

outcome of a k-round exchange of information. (Note that if a faulty

processor lies about who gave it information, this is equivalent to lying

about a value it was given.) Note also that for a given subset of nonfaulty

processors, only certain mappings are possible scenarios; in particular,

since nonfaulty processors are always truthful in relaying information, a

scenario must satisfy

�(pqw) = �(qw)

for each nonfaulty processor q, arbitrary processor p, and string w.

\The messages a processor p receives in a scenario � are given by

the restriction �p of � to strings beginning with p. The procedure we

present now for arbitrary m � 0, n � 3m+1, is described in terms of p's

computation for a given �p, of the element of the interactive-consistency

vector corresponding to each processor q (i.e., Vp(q)). The computation

is as follows:
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1. If for some subset Q of P of size > (n +m)=2 and some value �,

�p(pwq) = v for each string w over Q of length � m, p records �.

2. Otherwise the algorithm for m�1, n�1 is recursively applied with

P replaced by P � fqg, and �p by the mapping �̂p de�ned by

�̂p(pw) = �p(pwq)

for each string w of length � m over P �fqg. If at least b(n+m)=2c

of the n � 1 elements in the vector obtained in the recursive call

agree, p records the common value; otherwise p records NIL.

Note that �̂p corresponds to the m-level subscenario of � in which q

is excluded and in which each processor's private value is the value it

obtains directly from q in �."

We expect that many readers will share our opinion that this description of

OA is a challenge to comprehension. The argument for its correctness [12, page

231] is similarly hard to follow. The original authors also may have considered the

presentation somewhat di�cult, for a couple of years after the original publication

they reformulated the problem, the algorithm, and the argument for its correctness.

The revised presentation was couched in the metaphor of \Byzantine generals" and

is described in the next section.

2.2 Byzantine Generals

As mentioned earlier, BG di�ers from IC in that there is a distinguished processor

called the General whose value is to be communicated to all other processors (called

lieutenants).1 Again, there are n processors in total, of which some (possibly includ-

ing the General) may be faulty. The General has some \order" v and the problem

is to devise an algorithm that will allow each Lieutenant p to compute an estimate

�p of the General's order satisfying the following conditions:

BG1: If Lieutenants p and q are nonfaulty, then they agree on the value ascribed

to the General; that is �p = �q.

BG2: If the General is nonfaulty, then every nonfaulty lieutenant has the correct

order; that is �p = v.

We have renamed these conditions BG1 and BG2 to distinguish them from the

corresponding conditions of the IC case.

1Lamport, Shostak and Pease [9] often speak of the \Commanding General," and refer to the

others as the \lieutenant generals."
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The Oral Messages (OM) algorithm solves the BG problem under the same

assumptions as OA; it can be regarded as a substantial reformulation of OA, rather

than an independent algorithm. In order to distinguish the BG version of the

algorithm from the IC version to be introduced later, we denote them OMBG and

OMIC, respectively. The algorithm is characterized by the number of rounds to be

made: OMBG(m) is the instance of the algorithm that makes m + 1 rounds. The

following description is taken verbatim from [9, page 388]. Note that under the

Byzantine Generals metaphor, faulty processors are called \traitors," and nonfaulty

ones are \loyal." First we describe the simplest case, OMBG(0):

OMBG(0)

1. The General sends his value to every lieutenant.

2. Each lieutenant uses the value he receives from the General, or uses

the value retreat if he receives no value.

Now we can describe the general case.

OMBG(m), m > 0

1. The General sends his value to every lieutenant.

2. For each i, let vi be the value Lieutenant i receives from the General,

or else be retreat if he receives no value. Lieutenant i acts as the

General in Algorithm OMBG(m� 1) to communicate the value vi
to each of the n� 2 other lieutenants.

3. For each i, and each j 6= i, let vj be the value Lieutenant i received

from Lieutenant j in step (2) (using Algorithm OMBG(m� 1)), or

else retreat if he received no such value. Lieutenant i uses the value

majority(v1; : : : ; vn�1).

2.2.1 The Correctness Argument

The argument for the correctness of OMBG is taken verbatim from [9, page 390]

Lemma 1 For any m and k, Algorithm OMBG(m) satis�es BG2 if

there are more than 2k +m participants and at most k traitors.

Proof: The proof is by induction on m. BG2 only speci�es what

must happen if the General is loyal. Using A1, it is easy to see that the

trivial algorithm OMBG(0) works if the General is loyal, so the lemma

is true for m = 0. We now assume it is true for m� 1, m > 0, and prove

it for m.

In step (1), the loyal General sends a value v to all n� 1 lieutenants.

In step (2), each loyal lieutenant applies OMBG(m� 1) with n� 1 gen-

erals. Since by hypothesis n > 2k +m, we have n � 1 > 2k + (m� 1),
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so we can apply the induction hypothesis to conclude that every loyal

lieutenant gets vj = v for each loyal Lieutenant j. Since there are at

most k traitors, and n� 1 > 2k+ (m� 1) � 2k, a majority of the n� 1

lieutenants are loyal. Hence, each loyal lieutenant has vi = v for a ma-

jority of the n � 1 values i, so he obtains majority(v1; : : : ; vn�1) = v in

step (3), proving BG2. 2

Theorem 1 For any m, Algorithm OMBG(m) satis�es conditions BG1

and BG2 if there are more than 3m participants and at most m traitors.

Proof: The proof is by induction onm. If there are no traitors, then it is

easy to see that OMBG(0) satis�es BG1 and BG2. We therefore assume

that the theorem is true for OMBG(m� 1) and prove it for OMBG(m),

m > 0.

We �rst consider the case in which the General is loyal. By taking

k equal to m in Lemma 1, we see that OMBG(m) satis�es BG2. BG1

follows from BG2 if the General is loyal, so we only need verify BG1 in

the case the General is a traitor.

There are at most m traitors, and the General is one of them, so at

mostm�1 of the lieutenants are traitors. Since there are more than 3m

generals, there are more than 3m�1 lieutenants, and 3m�1 > 3(m�1).

We may therefore apply the induction hypothesis to conclude that

OMBG(m�1) satis�es conditions BG1 and BG2. Hence, for each j, any

two loyal lieutenants get the same value for vj in step (3). (This follows

from BG2 if one of the two lieutenants is Lieutenant j, and from BG1

otherwise). Hence, any two loyal lieutenants get the same vector of values

v1; : : : ; vn�1, and therefore obtain the same value majority(v1; : : : ; vn�1)

in step (3), proving BG1. 2



Chapter 3

Bevier and Young's Veri�cation

Bevier and Young [3] performed a formal speci�cation and veri�cation of the OMBG

Algorithm using the Boyer-Moore theorem prover [4]. Insofar as the restrictions of

the Boyer-Moore logic allow1, Bevier and Young's speci�cation and veri�cation fol-

lows the published version of Lamport, Shostak and Pease [9] very closely. Since

the problem of practical interest is IC rather than BG, they augment their descrip-

tion [3, Section 3.4] with the speci�cation and veri�cation with an additional step

that applies OMBG iteratively (with each process in turn taking the role of the

General), thereby extending it to a solution for IC.

Bevier and Young specify OMBG in terms of two mutually recursive functions,

vom* and voml*; the former is the main OMBG function, while the latter speci�es

the iterative application over all lieutenants required in step (2) of the former. In

addition, the function vom0 speci�es the base case OMBG(0). These functions are

reproduced in Figure 3.1 (taken from [3, Figure 5, page 7]).2

Bevier and Young explain these functions as follows [3, pages 6,7]. Note that

the function (send v i j) denotes the value received when process i sends value v

to j.

\vom* is the top-level function which takes as arguments the number

m of rounds, the General's name g and value v, a list l of lieutenant

names, and the vector vec in which the message tra�c is recorded.

It returns a vector in which each lieutenant's position is �lled by that

lieutenant's view of the General's value. Arriving at this view requires

m � 1 rounds of communication (the call to the voml* function) com-

bined (pair'd) with the initial round in which the General distributes

1The Boyer-Moore logic is an untyped, unquanti�ed �rst-order logic resembling pure lisp.
2In order to satisfy the de�nitional principle of the Boyer-Moore system, the mutually recursive

pair vom* and voml* are encoded in the actual speci�cation as a single function with a \
ag"

argument to distinguish the two cases. This version is reproduced in Appendix A, Figure A.1.

9



10 Chapter 3. Bevier and Young's Veri�cation

De�nition

(vom0 g v l vec)

=

(if (listp l)

(put (car l)

(send v g (car l))

(vom0 g v (cdr l) vec))

vec)

De�nition

(vom* m g v l vec)

=

(if (zerop m)

(vom0 g v l vec)

(votelist

(pair (vom0 g v l vec)

(voml* (sub1 m) l (vom0 g v l vec) l vec)

l)))

De�nition

(voml* m g-list vom0 1 vec)

=

(if (listp g-list)

(pair (vom* m (car g-list) (get (car g-list) vom0)

(delete (car g-list) l) vec)

(voml* m (cdr g-list) vom0 l vec)

(delete (car g-list) l))

(init nil (length vec)))

Figure 3.1: Bevier and Young's Speci�cation of the Oral Messages Algorithm
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his value directly (the call to vom0), and voting on each element in the

resulting map (the call to votelist).

\The function voml* takes as arguments the number m of exchanges,

a list g-list of names of processes which will serve in turn as the general

in this round, a vector vom0 in which each process's slot is �lled with its

value sent to it by the General, a list l of the other lieutenants, and a

vector vec in which the message tra�c is recorded. It returns a vector

in which each lieutenant's name is bound to the list of messages that

lieutenant has received in this round of message exchanges."

Bevier and Young state that the veri�cation that their speci�cations of OMBG

satisfy BG1 and BG2 is \a fairly di�cult exercise in mechanical theorem prov-

ing" [3, page 1] but that they \gained considerable insight into the algorithm" from

their formalization [3, page 13]. They illustrate the latter point by referring to the

published proof of OMBG (reproduced in Section 2.2.1 above) and observing:

\Though seemingly straightforward, there is a considerable degree of

suppressed detail in this proof. In particular, the induction hypothesis

refers to what happens after each round of message exchange without

worrying about the intermediate states which occur during each round.

In terms of our mutually recursive version of the algorithm, the proof

above describes the induction by referring to what happens after each

call to vom* and simply assumes what happens in the calls to voml*.

\What happens in these calls, and what is crucial from the point of

view of a fully formal proof, is that there is a rather involved invariant

maintained by the algorithm. A key part of this invariant can be stated

roughly as follows: after each round of message exchange all of the non-

faulty processors agree on a value for the General, that value being the

General's actual value. This notion we call non-faulty agreement .

\Formulating and proving an appropriate version of the invariant for

BG2 was the primary e�ort in the proof."

The invariant referred to above is reproduced in Figure 3.2. Bevier and Young \do

not bother to describe some of the subsidiary concepts such as non-faulty-value

which are involved in the statement of the invariant" [3, page 14] and do not ex-

hibit the corresponding invariant for BG1, but note that it \is substantially more

involved."



12 Chapter 3. Bevier and Young's Veri�cation

Theorem. VOM-IC2-INVARIANT

(implies

(and (setp l)

(bounded-number-listp l (length vec))

(member i l)

(not (faulty i)))

(if flg

(implies

(and (not (member g l))

(not (faulty g))

(leq (plus (times 2 (fault-count l)) m)

(length l)))

(equal (get i (vom flg m g v l vec))

v))

(implies

(and (subbagp g l)

(equal (length v) (length vec))

(lessp (plus (times 2 (fault-count l)) m)

(length l))

(non-faulty-agreement (non-faulty-value g v)

g v))

(not (lessp (occurrences

(non-faulty-value g v)

(get i (vom flg m g v l vec)))

(if (member i g)

(sub1 (good-count g))

(good-count g)))))))

Figure 3.2: Bevier and Young's \Invariant" for BG2



Chapter 4

Speci�cation and Veri�cation

in EHDM

One source of complexity in both the speci�cation and veri�cation of Bevier and

Young's formulation of OMBG is the need for a pair of mutually recursive functions.

An additional burden is the need to perform a second speci�cation and veri�cation

in order to connect BG to IC. Both of these di�culties can be avoided by developing

a version of OM that solves IC directly. One way to see that this approach is likely

to be bene�cial is to observe that the iterated recursion inside OMBG is solving an

instance of IC: after the General has transmitted his value to all the lieutenants, each

of those lieutenants has a private value (the value he received from the General), and

the subgoal is for the n� 1 lieutenants to perform IC on those private values. Each

lieutenant will then have an IC vector that gives the value sent by the General to

each lieutenant; all nonfaulty lieutenants will have the same IC vector, and selecting

the majority value from those vectors will cause each of them to assign the same

value to the General.

It follows that a generalization of OMBG from BG to IC should be simpler than

OMBG, since the recursive subproblems will be the same as the parent. We will

call this generalization the OMIC algorithm. We present the algorithm and the

argument for its correctness in the next few pages. All the speci�cation that follows

in this section is taken directly from our formal veri�cation, and is in the language

of Ehdm [17]; the proof sketches are also taken from our formal veri�cation. The

full speci�cation and veri�cation is presented in Appendix C.

We will specify OMIC as a function of three arguments: m the number of

rounds, v a vector of private values, and caucus a set of processors. Processors

are represented by natural numbers in the range 0 : : :n � 1, and vectors are func-

tions from processors to values (of some uninterpreted type T ). OMIC will re-

turn a \vector" of vectors: that is a function from processors to vectors. Thus

OMIC(m; v; caucus)(p) will be the IC vector of processor p following the OMIC al-

13
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gorithm, and OMIC(m; v; caucus)(p)(q) will be p's opinion of q's private value (i.e.,

of v(q)). Notice that we are using higher-order functions (i.e., functions whose val-

ues are functions) here. We have found higher-order constructions very convenient

in several speci�cations that we have undertaken (see for example [13]).1

In preparation for formally specifying OMIC, we �rst state the property we

wish it to satisfy in the case m = 0. In this and the formulas that follow, free

variables are treated as universally quanti�ed at the outermost level, and we do not

generally identify the types of the variables appearing in these formulas (see the full

speci�cation in Appendix C for these subsidiary declarations).

OMIC(0; v; caucus)(p)(q)

= if p 2 caucus ^ q 2 caucus then send(v(q); q; p) else undef end if

Here, undef is some arbitrary value and send(v(q); q; p) is, as in Bevier and Young's

formulation a function that represents the value received by p when q sends it the

value v(q). Our requirement on OMIC in the case m = 0 simply states that if p

and q are both participants to the algorithm (i.e., both in the set caucus), then p's

opinion of q's private value v(q) following the algorithm should be send(v(q); q; p).

The property assumed of send is captured in the following axiom

send ax: Axiom ok(p) ^ ok(q) � send(t; q; p) = t

where ok(p) is the predicate that asserts that processor p is nonfaulty. (We regard

a processor that is faulty at any point in the algorithm as being faulty throughout.)

Essentially, this axiom captures Assumption A1 of oral messages. Notice that if

either p or q are faulty, we know nothing whatever about the value send(t; q; p).

Well, not exactly nothing: we do know that its value is functionally determined by

t, p, and q. Thus, if q were to send t to p in a later round, the value received would

be the same as in this round, whatever the fault-status of the processors concerned.

This may not be realistic if p or q are faulty, so we will reformulate send to take

the round number as an argument: send(r; t; q; p) represents the value received by

p when q sends it the value t in round r. The round number does not a�ect the

transmission when nonfaulty processors are involved:

send ax: Axiom ok(p) ^ ok(q) � send(r; t; q; p) = t

The only e�ect and purpose of this modi�ed treatment of the send function is to

make it absolutely clear that no assumptions at all are made about values commu-

nicated when either the sender or receiver is faulty.

1Higher-order functions are also used in Ehdm to specify set operations, which appear frequently

in this speci�cation. Sets are speci�ed as their characteristic predicates in Ehdm and the operation
that, for example, removes a processor from a set of processors has the speci�cation

caucus � fqg: function[set;processors ! set] = (� caucus; q : caucus with [(q) := false])
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The speci�cation of the property required of OMIC in the case m = 0 needs to

be adjusted accommodate the changed functionality of send :

OMIC(0; v; caucus)(p)(q)

= if p 2 caucus ^ q 2 caucus then send(0; v(q); q; p) else undef end if

For the case m = r, r > 0, we require that p's opinion of q's private value should

be send(r; v(q); q; q) if p = q,2 otherwise it should be the majority value in p's IC

vector, after performing OMIC with m = r� 1 on the current set of processors with

q excluded, and the values received from q as the private values. Thus we require

r > 0 � OMIC(r; v; caucus)(p)(q)

= if p 2 caucus ^ q 2 caucus

then if p = q

then send(r; v(q); q; q)

else maj(caucus � fqg;OMIC(r � 1; distr(r; v(q); q); caucus � fqg)(p))

end if

else undef

end if

Here, distr(r; v(q); q) is simply a function that uses send in round r to distribute

the value v(q) from q to every other process:3

distr: function[rounds; T; processors! vector] = (� r; t; p : (� z : send(r; t; p; z)))

The function maj takes a set caucus of processors, and a vector v, and computes the

majority value (if any) in that vector over that set. Actually, requiring this function

to be implemented by a majority vote overspeci�es the problem. All that is really

required is speci�ed in the following axiom, which states that if the good processors

form a majority in caucus , and if all the good processors have the same value in the

vector, then that is the value of the maj function. Notice that taking the median

of the values of the members of caucus (assuming they come from an ordered set)

would also satisfy this speci�cation (as was correctly noted by Lamport, Shostak

and Pease [9, page 388]).

majax: Axiom

jcaucusj > 2 � jfaulty members(caucus)j ^ ( 8 p : ok(p) ^ p 2 caucus � v(p) = t)

� maj(caucus; v) = t

2We could specify v(q) in this case; we have chosen the weaker assumption that a faulty processor

may not even know its own value.
3It might be less \wasteful" to add the set of recipient processors (i.e., caucus�fqg) as an addi-

tional argument to distr , rather than have the value sent to every process. This sort of \economy"

would be important in an implementation of the algorithm, but would clutter the speci�cation and

proof.
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The function application faulty members(caucus) that appears here is the set of

faulty (i.e., not ok) processors in the set caucus :

faulty members: function[set! set] = (� m1 : (� z : z 2 m1 ^:ok(z)))

Vertical bars denote the cardinality function. The only properties we require of this

function are captured in the following axioms.

j ? 1j: function[set! nat]

non empty ax: Axiom ( 9 p : p 2 m1), jm1j 6= 0

card remove ax: Axiom z 2 m1 � jm1 � fzgj = jm1j � 1

A second requirement on the maj function is that its value depends only on

those elements of the vector corresponding to members of the set caucus .

maj ext: Axiom

( 8 p : p 2 caucus � v1(p) = v2(p)) � maj(caucus; v1) = maj(caucus; v2)

We now return to the speci�cation of OMIC. The two properties required of

OMIC that were stated above could be speci�ed as axioms de�ning the function; we

prefer, however, to specify the function de�nitionally and to deduce those properties

as (straightforward) lemmas. The advantage of the de�nitional speci�cation is that

the Ehdm typechecker will guarantee its soundness (in the sense of not introducing

inconsistencies). To do this, we are required to exhibit a measure function that

takes the same arguments as OMIC and whose value is a natural number that

can be proved to decrease across recursive calls. In the present case, we use the

measure function terminates that simply returns its �rst argument (i.e., the number

of rounds). The �nal speci�cation is given in Figure 4.1.

We invite the reader to compare this speci�cation with that of Bevier and Young

that was shown in Figure 3.1. Since our speci�cation is pretty-printed (a function

performed automatically by Ehdm), while Bevier and Young's is given in raw text

form, the versions shown in Appendix A, which reproduce the exact text submitted

to their respective theorem proving environments, allow more exact comparison.

The Interactive Consistency conditions IC1 and IC2 are easily stated as theorems

to be proven:

C1 �nal: Theorem
ok(p) ^ ok(q) � OMIC(m; v; fullset)(p)(y) = OMIC(m; v; fullset)(q)(y)

C2 �nal: Theorem ok(p) ^ ok(q) � OMIC(m; v; fullset)(p)(q) = v(q)

where fullset is the set of all processors.
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terminates: function[rounds; vector; set! nat] = (� r; v; caucus! nat : r)

OMIC: Recursive function[rounds; vector; set! function[processors! vector]] =

(� r; v; caucus :

if r = 0

then (� p :

(� q :

if p 2 caucus ^ q 2 caucus

then send(r; v(q); q; p)

else undef

end if ))

else (� p :

(� q :

if p 2 caucus ^ q 2 caucus

then if p = q

then send(r; v(q); q; q)

else maj(caucus � fqg;

OMIC(r � 1; distr(r; v(q); q); caucus� fqg)(p))

end if

else undef

end if ))

end if )

by terminates

Figure 4.1: Our speci�cation of the Oral Messages Algorithm
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As in the informal proof of Section 2.2.1, we begin by proving a lemma similar

to IC2. The proof is by induction and in formal veri�cations it is usually convenient

to reformulate the theorem to be proved as a predicate on the induction variable.

Here, we call the predicate C2prop.

C2prop: function[rounds! bool] =

(� r : ( 8 p; q; caucus; v :

ok(p) ^ ok(q)

^ p 2 caucus ^ q 2 caucus

^ jcaucusj > 2 � jfaulty members(caucus)j+ r

� OMIC(r; v; caucus)(p)(q) = v(q)))

The base case of the induction (i.e., C2prop(0)) follows by straightforward appli-

cation of de�nitions; the inductive step (i.e., r < m ^ C2prop(r) � C2prop(r + 1))

follows from two lemmas. The �rst, which asserts that a good processor has the

correct opinion of its own value, is straightforward:

ok self: Lemma ok(y) ^ y 2 caucus � OMIC(r; v2; caucus)(y)(y) = v2(y)

The second, which asserts that under certain conditions a good processor forms the

correct opinion of the private value of another good processor, is more complex.

ok others: Lemma

r < m ^ jcaucus � fqgj > 2 � jfaulty members(caucus � fqg)j

^ ok(y) ^ ok(q)

^ y 2 caucus ^ q 2 caucus

^ y 6= q

^ ( 8 z; v1 : z 2 caucus ^ ok(z) ^ z 6= q

� OMIC(r; v1; caucus � fqg)(y)(z) = v1(z))

� OMIC(r + 1; v2; caucus)(y)(q) = v2(q)

Veri�cation of this property depends on the majax axiom of the maj function.

The two lemmas above are su�cient to establish the inductive step for veri�-

cation of C2prop(r); observe that the hypothesis to the inductive step discharges

the quanti�ed subexpression in ok others. The theorem C2 �nal follows straightfor-

wardly from C2prop(r) by substitution of m for r and fullset for caucus , and using

the axiom

fullset card ax: Axiom jfullsetj = n ^ jfaulty members(fullset)j � m

and the constraint that less than a third of the processors may be faulty:

mn prop: Formula 3 �m < n



19

This property is stated as a formula in the assuming section of the Ehdm module

that speci�es the theory developed here. It speci�es an assumption on the param-

eters m and n to the module: inside the module, this assumption is treated as an

axiom; it must be discharged whenever the module is instantiated.

IC1 is similarly proved by induction, using the following predicate.

C1prop: function[rounds! bool] =

(� r : ( 8 p; q; y; caucus; v :

ok(p) ^ ok(q)

^ p 2 caucus ^ q 2 caucus ^ y 2 caucus

^ jcaucusj > 3 � r ^ r � jfaulty members(caucus)j

� OMIC(r; v; caucus)(p)(y) = OMIC(r; v; caucus)(q)(y)))

Again the base case is straightforward; the inductive step has two cases, depending

on whether the processor y is faulty or not. The case that it is faulty is dealt with

in the following lemma, whose proof is a consequence of the maj ext axiom of the

maj function.

agree nok: Lemma

r < m ^ jcaucusj > 3 � (r + 1) ^ r + 1 � jfaulty members(caucus)j

^ ok(p) ^ ok(q)

^ p 2 caucus ^ q 2 caucus ^ y 2 caucus

^ :ok(y)

^ ( 8 z; v1 : z 2 caucus � fyg

� OMIC(r; v1; caucus� fyg)(p)(z) = OMIC(r; v1; caucus� fyg)(q)(z))

� OMIC(r + 1; v2; caucus)(p)(y) = OMIC(r + 1; v2; caucus)(q)(y)

The case when y is nonfaulty is treated in the following lemma

agree ok: Lemma

r < m ^ jcaucusj > 3 � (r + 1) ^ r + 1 � jfaulty members(caucus)j

^ ok(p) ^ ok(q)

^ p 2 caucus ^ q 2 caucus ^ y 2 caucus

^ ok(y)

� OMIC(r + 1; v2; caucus)(p)(y) = OMIC(r + 1; v2; caucus)(q)(y)

whose proof is a consequence of C2 �nal.

These two lemmas are su�cient to establish the inductive step for C1 �nal; note

that the hypothesis to this step discharges the quanti�ed subexpression in agree nok.

C1 �nal follows from C1prop(r) in the same way that C2 �nal follows from

C2prop(r).

The full speci�cation and veri�cation requires development of some \background

knowledge." For example, the inductions require a specialized induction scheme that
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goes from 0 only as far as m. This is stated as the Lemma round induct that is

ultimately derived from an axiom for Noetherian induction contained in a standard

Ehdm library module. The variable round prop is some arbitrary property of rounds

that is to be shown to hold for all rounds.

round prop: Var function[rounds! bool] round induct: Lemma

(round prop(0) ^ ( 8 r : r < m ^ round prop(r) � round prop(r + 1)))

� round prop(s)

A full listing of the formal speci�cation is provided in Appendix C, together

with Ehdm's \proof chain" analysis for C1 �nal. The latter identi�es the axiomatic

foundation for our development: this comprises the 6 axioms and the assumption

shown here, plus an axiom for induction and another for function extensionality that

come from library modules. The subsidiary lemmas required to carry out the formal

veri�cation number 23 (plus the two theorems), with another 4 in library modules,

and a further 20 typecheck correctness conditions (tccs) that are generated by the

typechecker. Only 2 of the tccs require user-generated proofs; the other 18 are

proved automatically.
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Discussion and Conclusion

5.1 Discussion

We have presented the formal speci�cation and veri�cation of an algorithm for In-

teractive Consistency derived from the Oral Messages algorithm for the Byzantine

Generals Problem. Both the speci�cation of the algorithm and the arguments for

its correctness are straightforward and closely modeled on those given by Lamport,

Shostak and Pease in their journal presentation [9]. Development of the formal spec-

i�cation and its veri�cation in Ehdm took about four days. By comparison, Bevier

and Young [3], using the Boyer-Moore theorem prover, found formal veri�cation of

their version of the algorithm \a fairly di�cult exercise in mechanical theorem prov-

ing" that occupied them for about a month. We do not know all the complexities

that confronted Bevier and Young, and so we cannot identify, much less apportion

credit to, all the reasons why we apparently found the veri�cation easier than them.

However, one explanation for these di�erent assessments of the di�culty of the

exercise may lie in the di�erent formulations employed for the algorithm. Bevier and

Young used the Byzantine Generals formulation, which must be applied iteratively

in order to solve the Interactive Consistency problem that is the topic of real interest,

and whose recursive subcase likewise requires iteration. This potentially complicates

the inductions at the heart of the proof (since the recursive subcase is not simply

a smaller instance of the original problem), and the larger veri�cation along with

it. The speci�cation of the algorithm may become similarly complicated in this

formulation. In contrast, our reformulation of the Oral Messages algorithm solves

the Interactive Consistency problem directly, and its recursive subcase is a smaller

instance of itself. The formal speci�cation, main inductions, and overall veri�cation

are then entirely straightforward.

The lesson here is a variation on the well-known observation that it is sometimes

easier to prove a stronger than a weaker theorem when using induction. In partic-

ular, it is much easier to prove properties of an algorithm whose recursive subcases

21
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are exact replicas of itself: and it may be worth modifying the algorithm, or its

requirement, or both, in order to make this so. A related observation, one that we

�rst heard explicitly articulated by our colleague Shankar, is that recursions should

always be formulated so that the base case is completely di�erent from the recursive

case|since otherwise one may end up verifying substantially the same argument

twice.

But our simpler veri�cation cannot be entirely attributed to our reformulation

of the Oral Messages algorithm into the IC form, for we have also veri�ed the BG

version of the algorithm as considered by Bevier and Young. Our speci�cation

of the BG form is not exactly the same as theirs, since our richer speci�cation

language allows us to specify the algorithm without the need to simulate a pair of

mutually recursive functions (see Appendix B). Nonetheless, our BG formulation is

substantially the same as Bevier and Young's and yet its veri�cation is only a little

more complex than that of OMIC.1 However, we must admit that the formulation

and veri�cation of the BG version would have been signi�cantly more di�cult had

we not already performed the IC version; that is speci�cation and veri�cation of IC

and then BG is probably much simpler than tackling BG alone.

But allowing for the advantage we gained by choosing the more tractable ap-

proach, we still seem to have found this exercise more straightforward that Bevier

and Young, and we attribute some of this to the design decisions embodied in Ehdm.

The speci�cation language ofEhdm is intended to provide a fairly direct and natural

means for expressing a variety of mathematical concepts, while retaining a straight-

forward logical foundation. We were grati�ed to �nd that the language helped us

to achieve clear descriptions of these tricky algorithms. We �nd the strong type

system and higher-order capabilities particularly helpful in this regard. Identify-

ing the types of the variables and functions involved is a valuable �rst step in the

formulating the speci�cation, since it suggests the ways in which functions should

be combined and thereby, in this case, helps determine the shape of the recursion.

Higher-order logic allows many ideas to be expressed is a direct manner: thus, we do

not require the mutual recursion that complicates Bevier and Young's speci�cation,

and we can represent values as functions, without the need to introduce lists.

We have had similar experiences with other speci�cations that we have under-

taken. For example, our formal development in Ehdm of a model for fault-masking

and transient-recovery in digital 
ight-control systems [13, 14] was undertaken in

parallel with a similarly detailed development using conventional pencil-and-paper

mathematical notation [5,6]. The Ehdm version took no longer to develop than the

other, is more general, is equally readable, and has been fully veri�ed.

The simplifying reformulation of the Oral Messages Algorithm into its IC form

is very much the kind of bene�t that we strive to obtain from formal methods (see,

1The veri�cation, which is available from the author on request, was obtained by modifying the

OMIC version, and took about a man-day to produce.



5.2. Conclusion 23

for example, our improved argument for the correctness of the Interactive Conver-

gence clock synchronization algorithm [15,16]). We are strongly of the opinion that

formal methods must contribute to, and cannot stand apart from, established and

informal practices in software and hardware engineering. Thus, speci�cations must

be readable by others than their authors, and formal veri�cations must yield a chain

of argument that can be presented to, and will convince, a suitably knowledgeable

human reviewer.

5.2 Conclusion

As with other formal developments that we have performed, we derived a signi�cant

bene�t from this exercise quite apart from the mechanically-checked veri�cation of

an interesting argument. Here, the bene�t was a reformulation of the Oral Messages

Algorithm to solve the Interactive Consistency, rather than the Byzantine Generals

problem. This is not only a more useful form of the algorithm in practice, it is rather

simpler to specify and to verify. As always, this bene�t could have been obtained

without formalization, but it was the discipline of formalization that led us to focus

on the problem in the manner required.

The simpli�cation produced by our reformulation can be gauged by comparing

our formal speci�cation and veri�cation with that of Bevier and Young. Bevier and

Young state [3, page 1]

� \We believe that our formulation provides a very clear and unam-

biguous characterization of the algorithm.

� \Our machine checked proof elucidates several issues which are

treated rather lightly in the published version of the proof. In par-

ticular, the invariant maintained in the recursive subcases of the

algorithm is signi�cantly more complicated than is suggested by

the published proof.

\The latter two advantages arise as a consequence of providing a fully

formal proof, whether machine checked or not. However, the use of a

powerful mechanical theorem prover as a checker is a boon in managing

the complexity of the formal proof."

Regarding the �rst of these claims, we believe that our formulation is rather clearer

and simpler (and more useful) than Bevier and Young's, but that may be a matter

of taste. We believe we have demonstrated that their second claim is mistaken: our

machine-checked proof is essentially the same as the published version of the proof,

and we think it likely that the complexity discovered by Bevier and Young was an

artifact of their formalization and of the theorem prover at their disposal. Rather

than agreeing that \a powerful mechanical theorem prover : : : is a boon in managing
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the complexity of the formal proof," we believe that a mechanical theorem prover

should help the user develop reasonably clear and straightforward proofs.

In summary, we believe this small example provides some substantiation for our

belief that the bene�ts of formal speci�cation and veri�cation are best assisted by

rather rich speci�cation languages that permit natural forms of expression, and by

approaches to theorem proving that permit fairly direct control by the user.

Finally, recall that in the Introduction, we stated that one of our motivations for

undertaking this work was to see how di�cult the veri�cation of an algorithm for

interactive consistency would be, compared with one for clock synchronization. We

can now report that we found that veri�cation of OMIC was an order of magnitude

simpler than that of Interactive Convergence [15, 16]: four days work compared to

about 40, and 23 subsidiary lemmas compared with nearly 200. Given its relatively

small size, but rather interesting character, we invite others to try formal speci�ca-

tion and veri�cation of the Oral Messages Algorithm using their favorite veri�cation

system. We have used the Byzantine Generals formulation of this algorithm as

one of the test cases in the development of our new Prototype Veri�cation System,

PVS [11]. Using PVS, we are now able to construct the main proofs for correctness

of OMBG in under an hour. For those more interested in fault-tolerant algorithms

than the performance-testing of veri�cation systems, an interesting challenge is to

develop and formally verify some of the many variants that have been proposed for

the Oral Messages Algorithm. For example, by building on the experience gained in

the exercise described here, we have discovered (and corrected) an error in the al-

gorithm of Thambidurai and Park [21], and have developed rigorous proofs for (but

have not yet formally veri�ed) a generalization of the algorithm used to provide

Interactive Consistency in the Draper FTP architecture [7].
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Appendix A

The \Real" Speci�cations

In this Appendix we reproduce the \real" speci�cations of the algorithms employed

by Bevier and Young and by ourselves. Bevier and Young's speci�cation di�ers

from that of Figure 3.1 by combining the pair of mutually recursive functions into

a single function with a \
ag" argument; our speci�cation is the same as that given

on page 17, but is reproduced here in its raw text form.
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De�nition

(vom flg m g v l vec)

=

(if flg

(if (zerop m)

(vom0 g v l vec)

(votelist

(pair (vom0 g v l vec)

(vom f (sub1 m) l (vom0 g v l vec) l vec)

l)))

(if (listp g-list)

(pair (vom t m (car g) (get (car g) vom0)

(delete (car g) l) vec)

(vom f m (cdr g) v l vec)

(delete (car g) l))

(init nil (length vec))))

Figure A.1: Bevier and Young's Speci�cation|The Real Version
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OMIC: RECURSIVE function[rounds, vector, set

-> function[processors -> vector]] =

(LAMBDA r, v, caucus :

IF r = 0

THEN (LAMBDA p :

(LAMBDA q :

IF member(p, caucus) AND member(q, caucus)

THEN send(r, v(q), q, p) ELSE undef END IF))

ELSE (LAMBDA p :

(LAMBDA q :

IF member(p, caucus) AND member(q, caucus)

THEN IF p = q

THEN send(r, v(q), q, q)

ELSE maj(remove(caucus, q),

OMIC(r - 1, distr(r, v(q), q),

remove(caucus, q))(p))

END IF

ELSE undef

END IF))

END IF)

BY terminates

Figure A.2: Our Speci�cation|The Raw Text Version



Appendix B

The Byzantine Generals

Formulation of the Algorithm

We specify the Byzantine Generals formulation of the Oral Messages algorithm as

a function OMBG of four arguments: G the identity of the General, m the number

of rounds, t the value the General wishes to communicate and caucus, the set of

participants (which includes the General). OMBG will return a vector of values

in which OMBG(G;m; t; caucus)(p) is lieutenant p's opinion of the General's value.

The correctness conditions are the following.

BG1 �nal: Theorem ok(p) ^ ok(q)

� OMBG(G;m; t; fullset)(p) = OMBG(G;m; t; fullset)(q)

BG2 �nal: Theorem ok(p) ^ ok(G) � OMBG(G;m; t; fullset)(p) = t

The speci�cation of OMBG is rather interesting; it is due to our colleague Shankar.

In the case r = 0, lieutenant p's component of the vector returned is simply the value

received by p from the General; in the case r > 0, lieutenant p's component of the

vector is the value the General receives from himself when p = G, otherwise it is the

result of applying the maj function to the vector of values that p obtains when each

of the lieutenants in the caucus (less G but including p himself) acts as the General

in the OMBG algorithm with r � 1 rounds to distribute the value received by that

lieutenant from the original General. Notice how the higher-order capabilities of

the Ehdm speci�cation language allow us to specify the inner, iterative application

of OMBG by means of a �-abstraction, thereby avoiding the mutually recursive

functions of Bevier and Young's speci�cation.
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terminatesBG: function[processors; rounds; T; set! nat] ==

(� p; r; t; caucus! nat : r)

OMBG: Recursive function[processors; rounds; T; set! vector] =

(�G; r; t; caucus :

if r = 0

then (� p : if caucus(p)^ caucus(G)

then send(r; t; G; p)

else undef

end if )

else (� p : if caucus(p) ^ caucus(G)

then if p = G

then send(r; t; G;G)

else maj(caucus� fGg;

(� q : OMBG(q; r� 1; send(r; t; G; q); caucus� fGg)(p)))

end if

else undef

end if )

end if ) by terminatesBG

Figure B.1: Our Formulation of the Byzantine Generals Version of the Algorithm



Appendix C

The Full Speci�cation and

Veri�cation

C.1 The Speci�cation

We reproduce here the text of our speci�cation and veri�cation for the IC version

of the OM algorithm. The text comprises the module consensus. In the inter-

ests of brevity, we do not reproduce the system-generated module consensus tcc

that contains the \typecheck-consistency conditions" (tccs), nor the module top

that gives their proofs. Neither do we reproduce the library modules noetherian,

induction and functionprops. The module noetherian speci�es the axiom of

Noetherian Induction (see, for example [15, page 99], [13, page 62] or [17, pages

57{61]), and the module induction (see, for example [13, page 63]) derives some

more specialized induction schemes from that general formulation. One of these

is used to prove the round induct induction scheme over rounds that is employed

here. The functionprops module (see, for example [15, page 99]) simply speci�es

an axiom of function extensionality.

C.1.1 Module \Consensus"

This module contains the speci�cation and veri�cation of the OMIC algorithm. Cer-

tain subsidiary concepts, such as sets and cardinality are de�ned here, too. Normally

these concepts are imported from library modules (see, for example [13, page 66]),

but so few of their properties are needed here that we have preferred to specify them

in line.
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consensus: Module [m;n: nat]

Exporting all

Assuming

mn prop: Formula 3 �m < n

Theory

x: Var nat

processors: Type from nat with (� x : x < n)

rounds: Type from nat with (� x : x � m)

T: Type

vector: Type is function[processors ! T ]

r; s: Var rounds

v; v1; v2: Var vector

p; q; y; z: Var processors

undef: T

t: Var T

set: Type is function[processors ! bool]

fullset: set == (� z : true)

ok: function[processors ! bool]

caucus;m1;m2: Var set

p 2 m1: function[processors; set! bool] == (� p;m1 : m1(p))

faulty members: function[set! set] = (� m1 : (� z : z 2 m1 ^ :ok(z)))

?1� f?2g: function[set; processors ! set] ==
(� caucus; q : caucus with [(q) := false])

j ? 1j: function[set! nat]

non empty ax: Axiom ( 9 p : p 2 m1), jm1j 6= 0

fullset card ax: Axiom jfullsetj = n ^ jfaulty members(fullset)j � m

all ok: Lemma 0 = jfaulty members(caucus)j ^ p 2 caucus � ok(p)

card remove ax: Axiom z 2 m1 � jm1 � fzgj = jm1j � 1
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faulty members card remove ok: Lemma
z 2 m1 ^ ok(z) � jfaulty members(m1 � fzg)j = jfaulty members(m1)j

faulty members card remove nok: Lemma
z 2 m1 ^ :ok(z) � jfaulty members(m1 � fzg)j = jfaulty members(m1)j � 1

maj: function[set; vector! T ]

majax: Axiom jcaucusj > 2 � jfaulty members(caucus)j
^ ( 8 p : ok(p) ^ p 2 caucus � v(p) = t)
� maj(caucus; v) = t

maj ext: Axiom ( 8 p : p 2 caucus � v1(p) = v2(p))
� maj(caucus; v1) = maj(caucus; v2)

send: function[rounds; T; processors; processors ! T ]

send ax: Axiom ok(p) ^ ok(q) � send(r; t; q; p) = t

distr: function[rounds; T; processors ! vector] ==
(� r; t; p : (� z : send(r; t; p; z)))

terminates: function[rounds; vector; set! nat] == (� r; v; caucus! nat : r)

OMIC: Recursive function[rounds; vector; set! function[processors ! vector]]
= (� r; v; caucus :

if r = 0
then (� p : (� q :

if p 2 caucus ^ q 2 caucus then send(r; v(q); q; p) else undef end if ))
else (� p : (� q :

if p 2 caucus ^ q 2 caucus
then if p = q

then send(r; v(q); q; q)
else maj(caucus � fqg;

OMIC(r � 1; distr(r; v(q); q); caucus� fqg)(p))
end if

else undef
end if ))

end if ) by terminates

C1 �nal: Theorem ok(p) ^ ok(q)
� OMIC(m; v; fullset)(p)(y) = OMIC(m; v; fullset)(q)(y)

C2 �nal: Theorem ok(p) ^ ok(q) � OMIC(m; v; fullset)(p)(q) = v(q)
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C1prop: function[rounds! bool] =
(� r : ( 8 p; q; y; caucus; v :

ok(p) ^ ok(q) ^ p 2 caucus
^ q 2 caucus
^ y 2 caucus ^ jcaucusj > 3 � r ^ r � jfaulty members(caucus)j

� OMIC(r; v; caucus)(p)(y) = OMIC(r; v; caucus)(q)(y)))

C2prop: function[rounds! bool] =
(� r : ( 8 p; q; caucus; v :

ok(p) ^ ok(q) ^ p 2 caucus
^ q 2 caucus ^ jcaucusj > 2 � jfaulty members(caucus)j+ r

� OMIC(r; v; caucus)(p)(q) = v(q)))

C1: Lemma C1prop(r)

C2: Lemma C2prop(r)

Proof

Using induction; functionprops[processors; bool]

i: Var nat

round prop: Var function[rounds! bool]

round induct: Lemma (round prop(0)
^ ( 8 r : r < m ^ round prop(r) � round prop(r + 1)))

� round prop(s)

round induct proof: Prove
round induct fr if i@p1 in rounds then i@p1 else 0 end if g from

limited induction

fm 0,
m1  m,
p (� i : if i in rounds then round prop(i) else false end if ),
n sg

distr prop: Lemma ok(p) ^ ok(q) � distr(r; v(p); p)(q) = v(p)

distr prop proof: Prove distr prop from
send ax ft v(p), p q, q pg

OM0 prop: Lemma OMIC(0; v; caucus)(p)(q)
= if p 2 caucus ^ q 2 caucus then send(0; v(q); q; p) else undef end if

OM0 prop proof: Prove OM0 prop from OMIC fr 0g
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OM prop: Lemma r > 0 � OMIC(r; v; caucus)(p)(q)
= if p 2 caucus ^ q 2 caucus
then if p = q

then send(r; v(q); q; q)
else maj(caucus � fqg;OMIC(r � 1; distr(r; v(q); q); caucus� fqg)(p))
end if

else undef
end if

OM prop proof: Prove OM prop from OMIC

OM0 ok: Lemma ok(p) ^ ok(q) ^ p 2 caucus ^ q 2 caucus
� OMIC(0; v; caucus)(p)(q) = v(q)

OM0 ok proof: Prove OM0 ok from OM0 prop, send ax fr  0, t v(q@c)g

ok self: Lemma ok(y) ^ y 2 caucus � OMIC(r; v2; caucus)(y)(y) = v2(y)

ok self proof: Prove ok self from
OM prop fv  v2, p y, q yg,
OM0 prop fv  v2, p y, q yg,
send ax fp y, q y, t v2(y)g

remove ok member: Lemma
z 2 m1 ^ ok(z) � (p 2 faulty members(m1 � fzg), p 2 faulty members(m1))

remove ok member proof: Prove remove ok member from
faulty members fz  pg, faulty members fm1  m1 � fzg, z  pg

remove ok: Lemma z 2 m1 ^ ok(z) � faulty members(m1 � fzg) = faulty members(m1)

remove ok proof: Prove remove ok from
remove ok member fp a@p2g,
extensionality fF  faulty members(m1), G faulty members(m1 � fzg)g

remove nok member: Lemma
z 2 m1 ^ :ok(z) � (p 2 faulty members(m1 � fzg), p 2 faulty members(m1) � fzg)

remove nok member proof: Prove remove nok member from
faulty members fz  pg, faulty members fm1  m1 � fzg, z  pg

remove nok: Lemma z 2 m1 ^ :ok(z)
� faulty members(m1 � fzg) = faulty members(m1) � fzg

remove nok proof: Prove remove nok from
remove nok member fp a@p2g,
extensionality fF  faulty members(m1)� fzg, G faulty members(m1 � fzg)g

faulty members card remove ok proof: Prove faulty members card remove ok from
remove ok
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faulty members card remove nok proof: Prove faulty members card remove nok from
remove nok, faulty members, card remove ax fm1  faulty members(m1@c)g

ok card remove: Lemma
r < m ^ q 2 caucus ^ ok(q)
� jcaucusj > 2 � jfaulty members(caucus)j+ r + 1
� jcaucus � fqgj > 2 � jfaulty members(caucus � fqg)j+ r

ok card remove proof: Prove ok card remove from
card remove ax fm1  caucus, z  qg,
faulty members card remove ok fm1  caucus, z  qg

ok others: Lemma r < m

^ jcaucus � fqgj > 2 � jfaulty members(caucus � fqg)j
^ ok(y) ^ ok(q)
^ y 2 caucus
^ q 2 caucus
^ y 6= q

^ ( 8 z; v1 :
z 2 caucus ^ ok(z) ^ z 6= q

� OMIC(r; v1; caucus � fqg)(y)(z) = v1(z))
� OMIC(r + 1; v2; caucus)(y)(q) = v2(q)

next round: function[rounds! rounds] ==
(� r! rounds : if r < m then r + 1 else 0 end if )

ok others proof: Prove
ok others fz  p@p1, v1  distr(next round(r); v2(q); q)g from
majax
fcaucus caucus � fqg,
v  OMIC(r; distr(next round(r); v2(q); q); caucus� fqg)(y),
t v2(q)g,

OM prop fr next round(r), v  v2, p yg,
distr prop fr next round(r), v  v2, p q, q yg,
distr prop fr next round(r), v  v2, p q, q qg,
distr prop fr next round(r), v  v2, p q, q p@p1g

C2prop 0: Lemma C2prop(0)

C2prop 0 proof: Prove C2prop 0 from
C2prop fr 0g,
OM0 ok fp p@p1, q q@p1, v  v@p1, caucus caucus@p1g

C2prop r: Lemma r < m ^C2prop(r) � C2prop(r + 1)

remove others: Lemma p 2 caucus ^ p 6= q � p 2 caucus � fqg

remove others proof: Prove remove others



C.1. The Speci�cation 39

C2prop r proof: Prove C2prop r from
C2prop
fv v1@P3,
q  z@p3,
p p@p2,
caucus  caucus@p2� fq@p2gg,

C2prop fr next round(r)g,
ok others
fq q@p2,
y  p@p2,
v2  v@p2,
caucus  caucus@p2g,

ok self
fr next round(r),
y  p@p2,
v2  v@p2,
caucus  caucus@p2g,

ok card remove fcaucus caucus@p2, q q@p2g,
remove others fcaucus caucus@p2, q q@p2, p p@p2g,
remove others fcaucus caucus@p2, q q@p2, p z@p3g

C2 proof: Prove C2 from
round induct fround prop C2prop, s rg,
C2prop 0,
C2prop r fr r@p1g

agree nok: Lemma r < m

^ jcaucusj > 3 � (r + 1)
^ r + 1 � jfaulty members(caucus)j
^ ok(p) ^ ok(q)
^ p 2 caucus
^ q 2 caucus
^ y 2 caucus
^ :ok(y)
^ ( 8 z; v1 :

z 2 caucus � fyg
� OMIC(r; v1; caucus � fyg)(p)(z)
= OMIC(r; v1; caucus � fyg)(q)(z))

� OMIC(r + 1; v2; caucus)(p)(y) = OMIC(r + 1; v2; caucus)(q)(y)
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agree nok proof: Prove
agree nok fz  p@p3, v1  distr(next round(r); v2(y); y)g from
OM prop fr next round(r), v  v2, q yg,
OM prop fr next round(r), v  v2, q y, p qg,
maj ext
fcaucus caucus � fyg,
v1  OMIC(r; distr(next round(r); v2(y); y); caucus � fyg)(p),
v2  OMIC(r; distr(next round(r); v2(y); y); caucus � fyg)(q)g,

distr prop fr next round(r), v  v2, p yg,
distr prop fr next round(r), v  v2, p y, q  yg,
distr prop fr next round(r), v  v2, p y, q  p@p1g

agree ok: Lemma r < m

^ jcaucusj > 3 � (r + 1)
^ r + 1 � jfaulty members(caucus)j
^ ok(p) ^ ok(q) ^ p 2 caucus ^ q 2 caucus ^ y 2 caucus ^ ok(y)

� OMIC(r + 1; v2; caucus)(p)(y) = OMIC(r + 1; v2; caucus)(q)(y)

agree ok proof: Prove agree ok from
C2 fr next round(r)g,
C2prop fr next round(r), q  y, v  v2g,
C2prop fr next round(r), p q, q y, v  v2g

all ok proof: Prove all ok from
non empty ax fm1  faulty members(caucus)g,
faulty members fm1  caucus, z  pg

C1prop 0: Lemma C1prop(0)

C1prop 0 proof: Prove C1prop 0 from
C1prop fr 0g,
OM0 ok fp p@p1, q y@p1, v  v@p1, caucus caucus@p1g,
OM0 ok fp q@p1, q  y@p1, v  v@p1, caucus caucus@p1g,
all ok fp y@p1, caucus caucus@p1g,
nat invariant fnat var jfaulty members(caucus@p1)jg

C1prop r: Lemma r < m ^C1prop(r) � C1prop(r + 1)
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C1prop r proof: Prove C1prop r from
C1prop
fv v1@p3,
y  z@p3,
p p@p2,
q  q@p2,
caucus  caucus@p2� fy@p2gg,

C1prop fr next round(r)g,
agree nok
fv2  v@p2,
caucus  caucus@p2,
p p@p2,
q  q@p2,
y  y@p2g,

agree ok
fv2  v@p2,
caucus  caucus@p2,
p p@p2,
q  q@p2,
y  y@p2g,

remove others fp p@p2, q  y@p2, caucus  caucus@p2g,
remove others fp q@p2, q  y@p2, caucus  caucus@p2g,
card remove ax fm1  caucus@p2, z  y@p2g,
faulty members card remove nok fm1  caucus@p2, z  y@p2g

C1 proof: Prove C1 from
round induct fround prop C1prop, s rg,
C1prop 0,
C1prop r fr r@p1g

C1 �nal proof: Prove C1 �nal from
C1 fr mg, C1prop fr m, caucus  fullsetg, fullset card ax, mn prop

C2 �nal proof: Prove C2 �nal from
C2 fr mg, C2prop fr m, caucus  fullsetg, fullset card ax, mn prop

End consensus
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C.2 Proof-Chain Analysis

The following pages reproduce the output from the Ehdm proof-chain analyzer in

\terse mode" applied to the formula C1 final in module consensus. The analysis

for C2 final is similar. The Ehdm proof-chain analyzer examines the macroscopic

structure of a veri�cation|checking that all the premises used in a proof are either

axioms, de�nitions, or formulas which are, themselves, the target of a successful

proof elsewhere in the veri�cation. If any formulas are used from a module having

an assuming clause, then the proof-chain analyzer checks that those assumptions

are discharged by successful proofs; similarly, if formulas are used from a module

having a tcc module, then the proof-chain analyzer checks that all the tccs in

that module are discharged by successful proofs. The proof-chain analyzer ignores

unsuccessful proofs (such as automatically-generated tcc proofs) when a successful

proof for the same formula can be found. The \terse mode" output reproduced here

provides a commentary on only the \interesting" cases, namely proof obligations

involving assuming clauses and tccs, and a summary. All the proofs listed in the

summary were performed by the Ehdm theorem prover in \checking mode."

Terse proof chain for formula C1_final in module consensus

Interesting cases from the analysis follow; see summary for status

Use of the formula

consensus[EXPR, EXPR].C1_final

requires the following TCCs to be proven

consensus_tcc[EXPR, EXPR].processors_TCC1

consensus_tcc[EXPR, EXPR].rounds_TCC1

consensus_tcc[EXPR, EXPR].OM_TCC1

consensus_tcc[EXPR, EXPR].OM_TCC2

consensus_tcc[EXPR, EXPR].C1_final_TCC1

consensus_tcc[EXPR, EXPR].round_induct_TCC1

consensus_tcc[EXPR, EXPR].round_induct_TCC2

consensus_tcc[EXPR, EXPR].round_induct_proof_TCC1

consensus_tcc[EXPR, EXPR].round_induct_proof_TCC2

consensus_tcc[EXPR, EXPR].OM0_prop_TCC1

consensus_tcc[EXPR, EXPR].OM_prop_TCC1

consensus_tcc[EXPR, EXPR].OM0_ok_TCC1

consensus_tcc[EXPR, EXPR].ok_others_TCC1

consensus_tcc[EXPR, EXPR].next_round_TCC1

consensus_tcc[EXPR, EXPR].C2prop_r_TCC1

consensus_tcc[EXPR, EXPR].agree_nok_TCC1

consensus_tcc[EXPR, EXPR].agree_ok_TCC1

consensus_tcc[EXPR, EXPR].C1prop_r_TCC1

consensus_tcc[EXPR, EXPR].C1_final_proof_TCC1

Use of the formula
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induction.limited_induction

requires the following TCCs to be proven

induction_tcc.ind_m_proof_TCC1

Use of the formula

noetherian[naturalnumber, induction.prev].general_induction

requires the following assumptions to be discharged

noetherian[naturalnumber, induction.prev].well_founded

================== SUMMARY ==================

The proof chain is complete

The axioms and assumptions at the base are:

consensus[EXPR, EXPR].card_remove_ax

consensus[EXPR, EXPR].fullset_card_ax

consensus[EXPR, EXPR].maj_ext

consensus[EXPR, EXPR].majax

consensus[EXPR, EXPR].mn_prop

consensus[EXPR, EXPR].non_empty_ax

consensus[EXPR, EXPR].send_ax

functionprops[EXPR, EXPR].extensionality

noetherian[EXPR, EXPR].general_induction

Total: 9

The definitions and type-constraints are:

consensus[EXPR, EXPR].C1prop

consensus[EXPR, EXPR].C2prop

consensus[EXPR, EXPR].OM

consensus[EXPR, EXPR].faulty_members

naturalnumbers.nat_invariant

Total: 5

The formulae used are:

consensus[EXPR, EXPR].C1

consensus[EXPR, EXPR].C1_final

consensus[EXPR, EXPR].C1prop_0

consensus[EXPR, EXPR].C1prop_r

consensus[EXPR, EXPR].C2

consensus[EXPR, EXPR].C2prop_0

consensus[EXPR, EXPR].C2prop_r

consensus[EXPR, EXPR].OM0_ok

consensus[EXPR, EXPR].OM0_prop

consensus[EXPR, EXPR].OM_prop

consensus[EXPR, EXPR].agree_nok

consensus[EXPR, EXPR].agree_ok
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consensus[EXPR, EXPR].all_ok

consensus[EXPR, EXPR].distr_prop

consensus[EXPR, EXPR].faulty_members_card_remove_nok

consensus[EXPR, EXPR].faulty_members_card_remove_ok

consensus[EXPR, EXPR].ok_card_remove

consensus[EXPR, EXPR].ok_others

consensus[EXPR, EXPR].ok_self

consensus[EXPR, EXPR].remove_nok

consensus[EXPR, EXPR].remove_nok_member

consensus[EXPR, EXPR].remove_ok

consensus[EXPR, EXPR].remove_ok_member

consensus[EXPR, EXPR].remove_others

consensus[EXPR, EXPR].round_induct

consensus_tcc[EXPR, EXPR].C1_final_TCC1

consensus_tcc[EXPR, EXPR].C1_final_proof_TCC1

consensus_tcc[EXPR, EXPR].C1prop_r_TCC1

consensus_tcc[EXPR, EXPR].C2prop_r_TCC1

consensus_tcc[EXPR, EXPR].OM0_ok_TCC1

consensus_tcc[EXPR, EXPR].OM0_prop_TCC1

consensus_tcc[EXPR, EXPR].OM_TCC1

consensus_tcc[EXPR, EXPR].OM_TCC2

consensus_tcc[EXPR, EXPR].OM_prop_TCC1

consensus_tcc[EXPR, EXPR].agree_nok_TCC1

consensus_tcc[EXPR, EXPR].agree_ok_TCC1

consensus_tcc[EXPR, EXPR].next_round_TCC1

consensus_tcc[EXPR, EXPR].ok_others_TCC1

consensus_tcc[EXPR, EXPR].processors_TCC1

consensus_tcc[EXPR, EXPR].round_induct_TCC1

consensus_tcc[EXPR, EXPR].round_induct_TCC2

consensus_tcc[EXPR, EXPR].round_induct_proof_TCC1

consensus_tcc[EXPR, EXPR].round_induct_proof_TCC2

consensus_tcc[EXPR, EXPR].rounds_TCC1

induction.basic_induction

induction.induction_m

induction.limited_induction

induction_tcc.ind_m_proof_TCC1

noetherian[naturalnumber, induction.prev].well_founded

Total: 49

The completed proofs are:

consensus[EXPR, EXPR].C1_final_proof

consensus[EXPR, EXPR].C1_proof

consensus[EXPR, EXPR].C1prop_0_proof

consensus[EXPR, EXPR].C1prop_r_proof

consensus[EXPR, EXPR].C2_proof

consensus[EXPR, EXPR].C2prop_0_proof
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consensus[EXPR, EXPR].C2prop_r_proof

consensus[EXPR, EXPR].OM0_ok_proof

consensus[EXPR, EXPR].OM0_prop_proof

consensus[EXPR, EXPR].OM_prop_proof

consensus[EXPR, EXPR].agree_nok_proof

consensus[EXPR, EXPR].agree_ok_proof

consensus[EXPR, EXPR].all_ok_proof

consensus[EXPR, EXPR].distr_prop_proof

consensus[EXPR, EXPR].faulty_members_card_remove_nok_proof

consensus[EXPR, EXPR].faulty_members_card_remove_ok_proof

consensus[EXPR, EXPR].ok_card_remove_proof

consensus[EXPR, EXPR].ok_others_proof

consensus[EXPR, EXPR].ok_self_proof

consensus[EXPR, EXPR].remove_nok_member_proof

consensus[EXPR, EXPR].remove_nok_proof

consensus[EXPR, EXPR].remove_ok_member_proof

consensus[EXPR, EXPR].remove_ok_proof

consensus[EXPR, EXPR].remove_others_proof

consensus[EXPR, EXPR].round_induct_proof

consensus_tcc[EXPR, EXPR].C1_final_TCC1_PROOF

consensus_tcc[EXPR, EXPR].C1_final_proof_TCC1_PROOF

consensus_tcc[EXPR, EXPR].C1prop_r_TCC1_PROOF

consensus_tcc[EXPR, EXPR].C2prop_r_TCC1_PROOF

consensus_tcc[EXPR, EXPR].OM0_ok_TCC1_PROOF

consensus_tcc[EXPR, EXPR].OM0_prop_TCC1_PROOF

consensus_tcc[EXPR, EXPR].OM_TCC1_PROOF

consensus_tcc[EXPR, EXPR].OM_TCC2_PROOF

consensus_tcc[EXPR, EXPR].OM_prop_TCC1_PROOF

consensus_tcc[EXPR, EXPR].agree_nok_TCC1_PROOF

consensus_tcc[EXPR, EXPR].agree_ok_TCC1_PROOF

consensus_tcc[EXPR, EXPR].next_round_TCC1_PROOF

consensus_tcc[EXPR, EXPR].ok_others_TCC1_PROOF

consensus_tcc[EXPR, EXPR].round_induct_TCC1_PROOF

consensus_tcc[EXPR, EXPR].round_induct_TCC2_PROOF

consensus_tcc[EXPR, EXPR].round_induct_proof_TCC1_PROOF

consensus_tcc[EXPR, EXPR].round_induct_proof_TCC2_PROOF

induction.discharge

induction.ind_m_proof

induction.ind_proof

induction.limited_proof

induction_tcc.ind_m_proof_TCC1_PROOF

top[EXPR, EXPR].processors_TCC1_PROOF

top[EXPR, EXPR].rounds_TCC1_PROOF

Total: 49


